选数
提交数: 231, 通过率: 73.59%, 平均分: 76.54
题目描述:
已知 $n$ 个整数 $x_1,x_2,\cdots,x_n$,以及 $1$ 个整数 $k$($k<n$)。从 $n$ 个整数中任选 $k$ 个整数相加,可分别得到一系列的和。例如当 $n=4$,$k=3$,$4$ 个整数分别为 $3,7,12,19$ 时,可得全部的组合与它们的和为:
$3+7+12=22$
$3+7+19=29$
$7+12+19=38$
$3+12+19=34$
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:$3+7+19=29$。
输入格式:
第一行两个空格隔开的整数 $n,k$($1 \le n \le 20$,$k<n$)。
第二行 $n$ 个整数,分别为 $x_1,x_2,\cdots,x_n$($1 \le x_i \le 5\times 10^6$)。
输出格式:
输出一个整数,表示和为素数的种类数。
样例输入:
(双击复制)4 3 3 7 12 19
样例输出:
(双击复制)1时间限制: 1000ms
空间限制: 256MB
来源: NOIP2002普及T2